最新动态
NEWS CENTER
您现在的位置:
首页
-
-
中超股份聊陶瓷纤维及其涂层

中超股份聊陶瓷纤维及其涂层

  • 分类:最新动态
  • 作者:ZC-New Material
  • 来源:陶瓷纤维和涂层21世纪先进材料
  • 发布时间:2021-12-29
  • 访问量:0

【概要描述】在陶瓷基复合材料(CMC)的加工处理和性能应用中,纤维扮演了非常重要的角色。纤维的热机械和热化学性能决定了复合材料制造的气氛、温度和编织能力。在服役过程中,纤维及其相应的过渡相对提高复合材料性能的效果起关键作用。当基体上萌生裂纹时,纤维起到维持复合材料结构一体化的重要作用。

中超股份聊陶瓷纤维及其涂层

【概要描述】在陶瓷基复合材料(CMC)的加工处理和性能应用中,纤维扮演了非常重要的角色。纤维的热机械和热化学性能决定了复合材料制造的气氛、温度和编织能力。在服役过程中,纤维及其相应的过渡相对提高复合材料性能的效果起关键作用。当基体上萌生裂纹时,纤维起到维持复合材料结构一体化的重要作用。

  • 分类:最新动态
  • 作者:ZC-New Material
  • 来源:陶瓷纤维和涂层21世纪先进材料
  • 发布时间:2021-12-29
  • 访问量:0
详情

  在陶瓷基复合材料(CMC)的加工处理和性能应用中,纤维扮演了非常重要的角色。纤维的热机械和热化学性能决定了复合材料制造的气氛、温度和编织能力。在服役过程中,纤维及其相应的过渡相对提高复合材料性能的效果起关键作用。当基体上萌生裂纹时,纤维起到维持复合材料结构一体化的重要作用。

 

  在CMC中作为增强体的纤维大体上分为两类:(1)非氧化物纤维,如碳化硅(SiC)、氮化硼(BN)及硅---碳(Si-B-N-C);(2)氧化物纤维,如铝的氧化物(Al2O3,还包括单晶氧化铝)、氧化铝和氧化锆的混合物(Al2O3ZrO2YAG以及莫来石(3Al2O3-2SiO2)。非氧化物纤维具有高强度、好的抗蠕变性,但是却容易被氧化而导致性能退化。氧化物纤维与生俱来便抗氧化,但是由于有较高的氧元素扩散,所以在高温下只有有限的抗蠕变性。随着晶粒尺寸的增大,多晶氧化物纤维的蠕变速率降低,但是这个优点却因强度的降低而被抵消了。

 

  非氧化物纤维通常采用聚合物前驱体来制造,在它们裂解成为陶瓷纤维之前,需要经过复杂的中间处理过程。聚合物前驱体法制造的SiC类纤维是强度最高的陶瓷纤维,早期的这类纤维(以NicalonTM为代表)是由非常小的β-SiC晶粒、高碳和/或非晶相等构成。这类纤维有较低的弹性模量,因而它们的断裂应变大于1%。后期的这类纤维有更低的氧含量,并且在更高的温度下才裂解,从而β-SiC的晶粒更大、非晶相含量很低且碳和SiC的体积分数更高。因此,其室温强度下降、模量上升,从而在满足断裂应变的同时,显著提高了高温强度和抗蠕变性。有趣的是一种非Si-B-N-C纤维的研制(采用了一种新的聚合物前驱体法制造),这种纤维有很高的强度和硬度,而且实际中具有较好的强度保持力及抗蠕变性(Baldus,1997)

 

  单晶氧化物纤维通常比(与之同质的可对比的)多晶氧化物纤维具有更高的强度和更好的抗蠕变性。然而,由于它制造非常昂贵,故本书中没有讨论。在多晶氧化物纤维中,强度最高的是由湿化学前驱体衍生出的纤维,这种方法可获得细晶粒纤维,同时避免了低强度大晶粒的形成。然而,具有好的晶粒微观结构的材料却比那些组分相同但是具有粗大晶粒微观结构材料的抗蠕变性能差。近期,具有可变晶体形态的两相氧化铝-莫来石纤维研究工作表明,抗蠕变性能提高的同时几乎不会造成强度的降低(与具有好的晶粒微观结构的材料相比)。

 

      CMC中界面涂层的目的是提供弱界面以便将基体中的裂纹与纤维分离,从而为复合材料提供损伤容限。另外,界面涂层通常用以在制造过程和服役过程中保护纤维免受环境的影响。由于大多数的商用纤维是SiC类的,涂层的研发工作主要集中在这类非氧化物纤维上。尽管我们广泛研究了界面涂层,但仅当含碳或含氮化硼的涂层作为中间层时,复合材料才具有强韧的性能。纤维-涂层-基体间界面的氧化是限制这类复合材料寿命的主要原因。界面的氧化使纤维的性能下降,同时也降低了界面的连接性能、从而同时影响了复合材料的强度和韧性。

 

  氧化物陶瓷纤维涂层的发展比非氧物陶瓷纤维涂层晚得多,其中一方面就是由于氧化物在升温过程中没有足够的抗蠕变性。随着近期抗蠕变性得到提高的氧化物纤维的发展,氧化物体系中界面控制的研究已取得一些进步。对氧化物复合材料体系,刚开始获得纤维涂层的方法(除了从非氧化物复合材料中借鉴的关于碳和氮化硼的法)主要集中在不与纤维或基体形成化合物的氧化物。最近的新方法主要是氧化物界面涂层材料,它模拟碳和氮化硼的层晶体结构,其在非氧化物体系中已取得成功的应用。目前技术发展到能够通过使用多孔涂层和易形变涂层提供一个机械结合弱的界面。对于氧化物体系,最新的界面研究集中于在涂层化合物和氧化物纤维间创建高表面能或者不润湿的界面。

关键词:

扫二维码用手机看

推荐资讯

涂覆工艺定制化技术壁垒高,基膜涂覆一体化大势所趋

涂覆工艺定制化技术壁垒高,基膜涂覆一体化大势所趋

涂覆改性是提升电池能量密度的安全垫,重要性日益凸显。湿法隔膜在理化特性、力学性能方面均具有明显优势,但是热稳定性不佳。涂覆改性可以有效降低其热收缩率,同时提高抗穿刺强度,安全性得到显著提升。此外,涂覆材料可以增强隔膜与电解液之间的浸润性,提高离子电导率。近两年湿法隔膜的涂覆比例达到80%以上。       涂覆工序定制化特征明显,需要根据下游电池厂实际需求进行加工,差异性主要体现在浆料配方。涂覆溶剂可分为水性和油性两种,其中油性涂覆均匀性和粘附性优于水性涂覆,定位中高端产品,成本较高,海外电池厂更加青睐。涂覆颗粒可分为无机、有机,其中无机涂覆工艺简单且成本较低从而占据主流市场(90%以上)。无机和有机涂层各有优势,可通过多层涂覆或混合涂覆进一步优化。多层涂覆是在基膜表面先涂覆一层氧化铝,然后再涂覆PVDF等有机层,形成多层复合隔膜。混合涂覆则是将无机、有机两种浆料混合在一起涂覆至基膜表面。涂覆溶剂及颗粒的搭配不同决定了最终产品的差异性,海外涂覆厂掌握浆料配方核心技术,国内厂商开展相关业务通常需要获得专利授权。       行业发展早期,隔膜涂覆以第三方代工及电池厂自建产能为主。代工典型企业为璞泰来,其主要从隔膜厂/电池厂购买基膜进行涂覆赚取加工费;电池厂自建涂覆产线主要有SK、比亚迪等头部企业。这种商业模式形成的主要原因在于:       1)早期隔膜厂尚未大规模建设涂覆产线,行业整体供给偏紧,多渠道涂覆加工可较好匹配下游客户需求;       2)彼时隔膜价格较高,若涂覆过度依赖隔膜厂则会进一步加大电池厂成本压力,代工及自建产线可引入市场竞争,有利于增强电池厂议价能力。目前基膜及涂覆价格已经降至历史较低水平,供需紧张行情下电池厂成本容忍度更高,隔膜厂向下布局涂覆迎来提速。       受限于涂覆产能偏紧,未来一段时间第三方代工及基膜涂覆一体化预计将并行发展。从中长期看,基膜涂覆一体化乃大势所趋。涂覆环节重资产属性强,专业化程度高,对电池厂资产运营能力和技术工艺提出很高要求。从实际情况来看,电池厂涂覆产能建设缓慢,供给极为有限,绝大部分需求都需要通过外采解决。就代工而言,目前璞泰来一枝独秀,2021年璞泰来涂覆加工(及销量)达21.7亿平,占当年国内湿法隔膜的37.6%,同步提升11pct,下游旺盛需求预计仍将有力支撑代工规模持续攀升。就基膜涂覆一体化而言,有利于隔膜厂把控产品质量、降本增效:       1)把控产品质量:隔膜本身较为脆弱,基膜的分切、收卷、运输装卸再到涂覆均会增加产品损坏风险。一体化生产可以较大程度减少产品瑕疵,并根据客户反馈进行穿透式质量管理,以便及时调整工艺确保产品可靠稳定。       2)降本增效:向上布局基膜可以把控采购成本,摆脱加工商单一角色强化产业链竞争优势;涂覆定制化属性带来较高附加值,隔膜厂加快自研及寻求海外涂覆专利授权,坚定向下拓展一体化拓展新的利润增长点。恩捷股份涂覆比例从2020年的18%快速提升至2021年的30%。星源材质自2020年加码湿法隔膜,2021年涂覆比例已经提升至26%。涂覆膜性价比逐步凸显,电池厂旺盛需求带动隔膜厂涂覆比例继续提升。
2022-09-22
导热球形氧化铝:跟随新能源汽车放量与电池结构升级,需求高速增长

导热球形氧化铝:跟随新能源汽车放量与电池结构升级,需求高速增长

  球形氧化铝作为导热用界面材料的填充料,应用于动力电池BMS电池管理系统及同类型新能源储能电池模块防护、导热及粘接固定等多元场景需求;应用于动力电池PACK的热管理系统中,起到导热、灌封、防潮、防腐蚀、防震的作用;应用于电驱及车载充电机系统逆变器,满足功率器件对导热和防护的需求。
2022-08-03
陶瓷涂层在锂电池中的应用

陶瓷涂层在锂电池中的应用

陶瓷涂层对于锂离子电池性能有重要的影响,尤其是对锂电池安全性能具有重要的意义。电极和隔膜表面的陶瓷化,不仅能显著地降低电池的内短路率、提高安全性,还能改善极片和隔膜的电解液浸润性,降低极化,提高电池的循环等综合性能。
2022-07-26
锂电池隔膜用无机与有机涂覆材料的核心指标

锂电池隔膜用无机与有机涂覆材料的核心指标

无机涂覆材料可以提高隔膜的绝缘性,降低锂电池的短路率,同时提高良品率及安全性,在各类涂覆材料中占据主导地位。无机涂覆材料中,勃姆石和氧化铝占据主要的市场。
2022-07-22

洛阳中超新材料股份有限公司

二维码

销售部联系方式:

 

阻燃材料事业部:18137978388

结构陶瓷事业部:15036331285

 

© 2020 洛阳中超新材料股份有限公司     豫ICP备15025459号     网站建设:中企动力 洛阳